
QFLS在太陽能光伏研究中的應用與價值
在太陽能光伏材料研究中,準費米能級分裂(QFLS)已成為解析器件物理與優(yōu)化性能的關鍵指標。它量化光生載流子的化學勢能差異,直接揭示材料內部的輻射與非輻射復合損失。這些損失決定了太陽能電池開路電壓(VOC)的極限。
QFLS的核心價值:量化能量損失與識別根源
理想情況下,QFLS數(shù)值應該與器件的外部VOC相等。但實際太陽能電池中,接觸點、傳輸層以及材料缺陷導致電化學勢損失,使得實際VOC低于理論QFLS。這種QFLS與VOC的不匹配,就是電壓損失的來源。
QFLS測量直接量化輻射與非輻射復合損失,特別是非輻射復合會導致QFLS偏離其輻射極限值。這為識別電壓損失根源提供依據(jù)——究竟是材料本身的體內復合,還是界面問題。
具體案例分析
錫鉛鈣鈦礦研究:牛津大學Henry J. Snaith教授和河南大學李萌教授隊在添加半胱胺酸鹽酸鹽(CysHCl)的研究中[1],通過QFLS mapping(圖3e)發(fā)現(xiàn),添加CysHCl后錫鉛鈣鈦礦薄膜的QFLS值提升,且空間分布更均勻。結果表明CysHCl鈍化了材料缺陷,降低了非輻射復合。

器件結構優(yōu)化:青島科技大學周忠敏教授和岳芳教授團隊研究增強電場對QFLS赤字的影響[2]。圖1d展示不同半堆疊器件的PLQY測量QFLS數(shù)據(jù),證實優(yōu)化鈣鈦礦/FPD結構能抑制QFLS赤字。該抑制機制通過增強載流子分離和提取效率實現(xiàn)。


快速檢測技術:光焱科技Enlitech QFLS-Maper檢測設備能在3秒內獲得QFLS視覺圖,快速呈現(xiàn)材料整體準費米能級分布,直觀識別材料的優(yōu)劣與缺陷分布,加速材料篩選和優(yōu)化過程。
QFLS對器件優(yōu)化與材料選擇的指導作用
QFLS量化后,研究人員可以辨識電壓損失瓶頸,指導器件設計和材料選擇。它評估不同傳輸層材料的影響,以及薄膜在不同處理階段的表面性質變化。
傳輸層優(yōu)化:阿卜杜拉國王科技大學Stefaan De Wolf教授團隊利用QFLS mapping(圖3d–f)和QFLS分布直方圖(圖3g)[3],比較窄帶隙鈣鈦礦在不同ITO/SAM基板上的QFLS值。結果揭示了不同SAM對QFLS分布的影響,為空穴傳輸層優(yōu)化提供指導。

復合機制分析:Universit?t Potsdam的Dieter Neher教授團隊指出[4],測量QFLS能有效評估鈍化分子和電荷傳輸層的電壓潛力。研究表明,即使VOC會因離子遷移或電極/輸送層界面復合而飽和,QFLS仍然忠實反映材料本身的復合機制,是評估材料固有品質的關鍵指標。

光焱科技QFLS-Maper具備快速分層QFLS測試功能,能夠逐層分析各層材料(如HTL、電子傳輸層ETL)對整體組件性能的影響,幫助研究人員了解各層材料的優(yōu)劣,進而在材料制備過程中實時掌握材料效果,大幅縮短研發(fā)時程。
QFLS在評估電荷載流子濃度與復合動力學中的作用
QFLS直接反映電荷載流子濃度和復合速率。通過QFLS測量,可以判斷載流子壽命、摻雜濃度等因素對器件性能的影響。
摻雜濃度研究:盧森堡大學Damilola Adeleye教授團隊深入研究了摻雜濃度對QFLS的影響[5],并從QFLS和載流子壽命的測量中估算出摻雜濃度。文獻中的(圖3a)清楚展示了QFLS和載流子壽命隨Cu/In比以及不同生長溫度的變化。研究強調了QFLS直接反映電荷載流子濃度和復合速率的能力,有助于研究人員深入理解載流子行為,進而精確調控材料性能。

光焱科技QFLS-Maper結合了PLQY、EL-EQE和in-situ PL等多模態(tài)功能,為載流子動力學研究提供了全面的數(shù)據(jù)支持,幫助研究人員精確判斷載流子壽命、摻雜濃度等因素對器件性能的影響。
QFLS在發(fā)表研究成果中的幫助
在學術發(fā)表中,QFLS數(shù)據(jù)的運用能顯著提升論文的說服力和深度。它提供量化電壓損失的精確數(shù)據(jù),還能將實驗結果與理論效率限制進行對比,從而突出研究成果的潛力。
理論極限分析:阿爾及利亞巴特納大學Hichem Bencherif團隊通過公式將光致發(fā)光量子產率(PLQY)與QFLS關聯(lián)起來[6],指出QFLS可以定義理論效率極限。文獻中的(圖3e)展示了鈣鈦礦薄膜的QFLS結果及其分布直方圖,用以評估效率損失。這為報告器件接近理論極限的潛力提供了有力證據(jù),證明了2D/3D異質結構在提高效率方面的優(yōu)勢。



老化機制研究:德國愛爾朗根-紐倫堡大學Christoph J. Brabec教授團隊利用QFLS(圖4a)評估不同層堆疊下非輻射損失的變化[7],發(fā)現(xiàn)體內復合是全器件非輻射損失的主要來源。即使有穩(wěn)定的傳輸層,體內缺陷的形成仍然是影響長期穩(wěn)定性的主要因素。這種QFLS的定量分析為深入理解器件老化機制提供了關鍵數(shù)據(jù),對開發(fā)更穩(wěn)定的鈣鈦礦太陽能電池至關重要。

提供普適性基準與實驗結果可比性
QFLS作為一個絕對的、有量綱的物理量,提供了一個普適性基準,使得來自不同組分和不同實驗室的研究結果都能在同一基準上進行比較。這對學術交流和研究標準化具有重要意義。
多材料對比研究:英國牛津大學Henry J. Snaith和Shuaifeng Hu教授團隊通過QFLS mapping(圖3a)[8],評估了不同溶液制備的Sn-Pb鈣鈦礦薄膜的光電性能。研究顯示,PhA(磷酸)處理的薄膜有著更均勻的QFLS分布和更高的平均值,證明了添加劑對材料品質的提升作用。這類QFLS數(shù)據(jù)的引入,使得不同材料和制程的優(yōu)劣能夠被客觀比較。

光焱科技QFLS-Maper具備QFLS、PLQY、iVoc等多模態(tài)功能,提供了標準化且高精度的測量數(shù)據(jù),其PLQY靈敏度可達6個數(shù)量級(1E-4%),確保了測量準確性和國際接受度,極大地有利于論文發(fā)表和跨實驗室數(shù)據(jù)的比較。
預測器件性能與篩選材料
QFLS及其衍生的偽J-V (pseudo J-V) 曲線,能有效地預測器件潛力,在器件實際制造之前進行材料篩選,大幅節(jié)省研發(fā)成本與時間。
性能預測技術:荷蘭恩荷芬理工大學René A. J. Janssen教授團隊將QFLS光強度依賴數(shù)據(jù)轉換為偽J-V曲線(圖4b),并從中得出偽填充因子(pFF)(圖4d)和偽功率轉換效率(pPCE)(圖4e)[9]。
Kessels等學者通過實驗,精準測量了鈣鈦礦薄膜在不同GlyHCl濃度下的準費米能階分裂(QFLS)值。他們將光強度依賴的QFLS數(shù)據(jù)轉換為偽J-V曲線,這種轉換通過利用光電流密度與光強度的正比關系,并將QFLS作為電壓來實現(xiàn)。
從這些偽J-V曲線中,研究團隊推導出偽填充因子(pFF)和偽功率轉換效率(pPCE)。這些衍生參數(shù)雖然不直接代表最終器件的實際J-V性能(因為忽略了電荷傳輸損失),但能有效排除器件制備中的傳輸損失,更純粹地反映鈣鈦礦材料本身的內在光電品質與潛力。

GlyHCl添加劑效應研究:通過QFLS及其衍生參數(shù)的深入分析,Kessels等學者的研究清晰揭示了GlyHCl對鉛錫基鈣鈦礦材料的積極作用:
抑制非輻射復合:在添加1-2 mol% GlyHCl的鈣鈦礦薄膜中,QFLS值從886 meV提升至898-900 meV
改善晶體品質:GlyHCl延緩前驅體溶液中Sn2+的氧化,改善鈣鈦礦的晶粒尺寸分布和結晶品質
延長載流子壽命:載流子半衰期從0.7 μs增至1.5 μs
提升器件性能:VOC從0.69 V提升至0.81 V,FF從71%提升至78%
增強穩(wěn)定性:添加2或4 mol% GlyHCl能顯著提升器件在連續(xù)光照下的穩(wěn)定性
光焱科技QFLS-Maper能在最快2分鐘內預測材料的偽J-V曲線,從理論層面評估材料的效率潛力,大大縮短實驗周期,并且能將預測結果可視化呈現(xiàn),讓研究者能夠一目了然。
驗證理論模型與模擬結果
實驗測得的QFLS數(shù)據(jù),能夠為第一性原理計算(DFT)和漂移擴散(drift-diffusion)模擬等提供關鍵的實驗依據(jù),確保理論模型的準確性。
界面工程驗證:阿卜杜勒阿齊茲國王科技城學者Masaud Almalki等人在研究中明確指出[10]:「SCAPS模型與實驗數(shù)據(jù)的成功校準,證明了表面復合速度在提高器件效率方面的關鍵作用。長鏈烷基銨鹽的使用表明表面復合速度降低,進而減輕了VOC-QFLS失配」。
他們系統(tǒng)性地引入不同鏈長的烷基銨碘化物作為表面鈍化劑,利用能量帶圖解釋了QFLS和VOC的關系,其模擬結果與實驗觀察一致,即鈍化處理能有效抑制界面復合,提升QFLS(圖7a,b)。

器件建模驗證:美國First Solar研究團隊在Supporting Information中展示了E-Solver模擬器與SCAPS-1D模擬器在帶圖和QFLS/q–VOC差異方面的對比[11],結果高度一致,誤差極小(圖S1A,B和圖S2A,B)。這類對比證明了QFLS在驗證數(shù)值模擬和理論計算準確性方面的重要性,為半導體器件的設計提供了可靠的理論基礎。


第一性原理計算:韓國技術學院Yong-Hoon Kim與Juho Lee, Hyeonwoo Yeo等學者報導了從第一性原理計算中提取納米級結點的QFLS剖面圖[12],并探討其與有限偏壓下電荷傳輸?shù)年P聯(lián)性(圖4A,B)。藉由第一性原理計算QFLS,研究人員可以在實際合成或制造新材料和器件之前,預測其在不同偏壓和激發(fā)條件下的電學行為和電壓潛力。這縮短了研發(fā)周期,并能夠系統(tǒng)性地探索材料設計空間。

結論
QFLS及其mapping技術已成為太陽能光伏研究的工具。它提供量化能量損失、指導材料選擇和優(yōu)化器件設計的精確數(shù)據(jù),更在學術發(fā)表中扮演著關鍵角色。通過QFLS數(shù)據(jù),研究人員能更深入地理解光伏材料的內在物理機制,驗證理論模型,并為開發(fā)更高效、更穩(wěn)定的太陽能電池提供堅實的科學依據(jù)。這項技術的持續(xù)發(fā)展與應用,將持續(xù)推動太陽能光伏技術的進步,為人類社會的可持續(xù)發(fā)展貢獻力量。
參考文獻
1. Hu, S., Sun, X., Liu, W., Gregori, L., Zhao, P., Pascual, J., Dallmann, A., Dasgupta, A., Yang, F., Li, G., Aldamasy, M., Turren-Cruz, S.-H., Flatken, M. A., Fu, S., Iwasaki, Y., Murdey, R., Hoell, A., Schorr, S., Albrecht, S., Yang, S., Abate, A., Wakamiya, A., De Angelis, F., Li, M., & Snaith, H. J. (2025). Accessing Metal-Containing Species in Tin–Lead Perovskite Precursor Solutions via Molecular Strategies Guided by the Hard–Soft Acid–Base Principle. Angewandte Chemie International Edition, 64(34), 202514010.
2. Cheng, J., Cao, H., Zhang, S., Shao, J., Yan, W., Peng, C., Yue, F., & Zhou, Z. (2024). Enhanced Electric Field Minimizing Quasi-Fermi Level Splitting Deficit for High-Performance Tin-Lead Perovskite Solar Cells. Advanced Materials, 36(41), 202410298.
3. Zhumagali, S., Li, C., Marcinskas, M., Dally, P., Liu, Y., Ugur, E., Petoukhoff, C. E., Ghadiyali, M., Prasetio, A., Marengo, M., Pininti, A. R., Azmi, R., Schwingenschl?gl, U., Laquai, F., Getautis, V., Malinauskas, T., Aydin, E., Sargent, E. H., & De Wolf, S. (2025). Efficient Narrow Bandgap Pb-Sn Perovskite Solar Cells Through Self-Assembled Hole Transport Layer with Ionic Head. Advanced Energy Materials, 15(1), 202404617.
4. Caprioglio, P., Stolterfoht, M., Wolff, C. M., Unold, T., Rech, B., Albrecht, S., & Neher, D. (2019). On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells. Advanced Energy Materials, 9(37), 201901631.
5. Adeleye, D., Lomuscio, A., Sood, M., & Siebentritt, S. (2021). Lifetime, quasi-Fermi level splitting and doping concentration of Cu-rich CuInS2 absorbers. Materials Research Express, 8(2), 025905.
6. Aouni, Q., Kouda, S., Batoo, K. M., Ijaz, M. F., Sahoo, G. S., Bhattarai, S., Sasikumar, P., & Bencherif, H. (2025). Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model. Solar Energy, 286, 113144.
7. Peng, Z., Wortmann, J., Hong, J., Zhou, S., Bornschlegl, A. J., Haffner-Schirmer, J., Le Corre, V. M., Heumüller, T., Osvet, A., Rand, B. P., Lüer, L., & Brabec, C. J. (2025). Locating Non-Radiative Recombination Losses and Understanding Their Impact on the Stability of Perovskite Solar Cells During Photo-Thermal Accelerated Ageing. Advanced Energy Materials, 15(29), 202502787.
8. Hu, S., Wang, J., Zhao, P., Pascual, J., Wang, J., Rombach, F., Dasgupta, A., Liu, W., Truong, M. A., Zhu, H., Kober-Czerny, M., Drysdale, J. N., Smith, J. A., Yuan, Z., Aalbers, G. J. W., Schipper, N. R. M., Yao, J., Nakano, K., Turren-Cruz, S.-H., Dallmann, A., Christoforo, M. G., Ball, J. M., McMeekin, D. P., Zaininger, K.-A., Liu, Z., Noel, N. K., Tajima, K., Chen, W., Ehara, M., Janssen, R. A. J., Wakamiya, A., & Snaith, H. J. (2025). Steering perovskite precursor solutions for multijunction photovoltaics. Nature, 639(7925), 93–101.
9. Kessels, L. M., Remmerswaal, W. H. M., van der Poll, L. M., Bellini, L., Bannenberg, L. J., Wienk, M. M., Savenije, T. J., & Janssen, R. A. J. (2024). Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells. Solar RRL, 8(18), 202400506.
10. Almalki, I. S., Alanazi, T. I., Aldoghan, L., Aldossari, N., Almutawa, F., Alzahrani, R. A., Alenzi, S. M., Alzahrani, Y. A., Yafi, G. S., Almutairi, A., Aldukhail, A., Alharthi, B., Aljuwayr, A., Alghannam, F. S., Alanzi, A. Z., Alkhaldi, H., Alhajri, F., Alhumud, H. S., Alqarni, A. A., Alotaibi, M. H., AL-Saleem, N. K., Alkahtani, M., Alanazi, A. Q., & Almalki, M. (2025). Molecular Engineering of Alkylammonium Interfaces for Enhanced Efficiency in Perovskite Solar Cells. Solar RRL, 9(14), 202500389.
11. Krasikov, D., Kuciauskas, D., ??ajev, P., Farshchi, R., McReynolds, K., & Sankin, I. (2024, September 16). Understanding ERE and iVOC metrics for graded CdSeTe absorbers. Authorea.
12. Lee, J., Yeo, H., & Kim, Y.-H. (2020). Quasi-Fermi level splitting in nanoscale junctions from ab initio. Proceedings of the National Academy of Sciences, 117(19), 10142–10148.
微信掃一掃